Structured Convolution Matrices for Energy-efficient Deep learning
نویسندگان
چکیده
We derive a relationship between network representation in energy-efficient neuromorphic architectures and block Toplitz convolutional matrices. Inspired by this connection, we develop deep convolutional networks using a family of structured convolutional matrices and achieve state-of-the-art trade-off between energy efficiency and classification accuracy for well-known image recognition tasks. We also put forward a novel method to train binary convolutional networks by utilising an existing connection between noisy-rectified linear units and binary activations.
منابع مشابه
Learning Invariance with Compact Transforms
The problem of building machine learning models that admit efficient representations and also capture an appropriate inductive bias for the domain has recently attracted significant interest. Existing work for compressing deep learning pipelines has explored classes of structured matrices that exhibit forms of shift-invariance akin to convolutions. We leverage the displacement rank framework to...
متن کاملLinear Time Complexity Deep Fourier Scattering Network and Extension to Nonlinear Invariants
In this paper we propose a scalable version of a state-of-the-art deterministic timeinvariant feature extraction approach based on consecutive changes of basis and nonlinearities, namely, the scattering network. The first focus of the paper is to extend the scattering network to allow the use of higher order nonlinearities as well as extracting nonlinear and Fourier based statistics leading to ...
متن کاملDeep Learning and Structured Prediction for the Segmentation of Mass in Mammograms
In this paper, we explore the use of deep convolution and deep belief networks as potential functions in structured prediction models for the segmentation of breast masses from mammograms. In particular, the structured prediction models are estimated with loss minimization parameter learning algorithms, representing: a) conditional random field (CRF), and b) structured support vector machine (S...
متن کاملmaxDNN: An Efficient Convolution Kernel for Deep Learning with Maxwell GPUs
This paper describes maxDNN, a computationally efficient convolution kernel for deep learning with the NVIDIA Maxwell GPU. maxDNN reaches 96.3% computational efficiency on typical deep learning network architectures. The design combines ideas from cuda-convnet2 with the Maxas SGEMM assembly code. We only address forward propagation (FPROP) operation of the network, but we believe that the same ...
متن کاملTheoretical Properties for Neural Networks with Weight Matrices of Low Displacement Rank
Recently low displacement rank (LDR) matrices, or so-called structured matrices, have been proposed to compress large-scale neural networks. Empirical results have shown that neural networks with weight matrices of LDR matrices, referred as LDR neural networks, can achieve significant reduction in space and computational complexity while retaining high accuracy. We formally study LDR matrices i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1606.02407 شماره
صفحات -
تاریخ انتشار 2016